Der Schneeschuhhasen-Luchs-Zyklus

2. Die ökologischen Aspekte

Christine Breitenmoser-Würsten und Urs Breitenmoser (Text und Abbildungen)

Das Kluane Projekt

Während der ersten Phase der Untersuchung (1976-1985) stand die Hypothese im Vordergrund, die Keith (1985), als Abschluss seiner Arbeiten formuliert hatte:

Der Schneeschuhhasen-Zyklus wird von zwei entscheidenden Faktoren ange-trieben:

- Wenn der Populationshöhepunkt einmal überschritten ist, beschleunigt Präda-tion (= Verluste durch Raubtiere) die Talfahrt und reduziert die Hasenpopulation bis auf wenige Tiere.

Die Biologen verfolgten auf 9 Probefsälen sowohl die Entwicklung der Hasenpopulation durch monatliche Fangaktionen als auch die Todessätze radioaktiv markierter Hasen. Auf drei Probefsälen wurde eine Lachelntierfutter ausgesetzt, um den Rückgang der Hasen durch Futterverknappung auszuschliessen. Die Resultate dieser ersten Untersuchungsserie (Krebs et al. 1985, 1986; Smith et al. 1988, Sinclair et al. 1988) waren kurz zusammengefasst die folgenden:

- Die Futterzugabe hatte kaum einen Effekt. Lediglich auf einer der Probefsälen verzögerte sich die Niedergang der Population um 6 Monate.

Diese intensive Nutzung führte aber nicht zu einer absoluten Erschöpfung der Winternahrung; trotzdem startten die Hasen den Hungertod. Die meisten der mit kleinen Sendern überwachten Hasen trieben Räubertier zum Opfer.

Fütterungsversuche bewiesen, dass sogenannte "sekundäre" Pflanzenstoffe (hauptsächlich Phenole und Harze), die die Pflanzen als Abwehr gegen ihre Fressfeinde bilden, die Verdaunung der Hasen beeinträchtigen. Diese sekundären Pflanzenstoffe waren jedoch nicht verantwortlich für den Hasenrückgang, denn sie entwickelten sich antizyklisch: Ihr Gehalt in den Pflanzen sank mit dem Ansteigen der Hasenpopulation und war am geringsten während des Niedergangs.

Die vorläufige Folgerung aus diesen Beobachtungen und Experimenten war, dass die Prädatoren der ausschlaggebende Faktor im Schneckenschuhhasen-Zyklus sein muss. Der Einfluss der Winterfutterverknappung konnte aufgrund der Experimente aber noch nicht ausgeschlossen werden.

Auswirkung des Projekts (1986-1996)

Nach den ersten 10-jährigen Erfahrungen erweiterten die kanadischen Forscher ihre Untersuchungen zu einem Collaborative Special Project (CSP), das vom kanadischen Nationalfonds (NSERC) finanziert wird. CSP sind interdisziplinäre Projekte, an denen mehrere Universitäten beteiligt sein müssen. Im Fall des Kluane-Projekts sind es die Universitäten von Vancouver, Edmonton und Toronto. Acht Professoren, etwa vierzig Studenten und wissenschaftliche Mitarbeiter und weitere sechs bis acht technische Assistenten sind am Projekt beteiligt.

![Diagramm der Vegetation, Herdentier und Carnivoren in der borealen Waldzone]

Vegetation
- Jahresschichtung
- Forstlandwirtschaft

Herdentiere
- Populationsdynamik
- Nahrungsgewohnheiten

Karnivoren
- Populationsdynamik
- Nahrungsgewohnheiten

Kranich
- Sträucher
- Bäume

Schnittschneehase
- Erdbär
- Eichhörnchen
- Kleinsäuger
- Raupenhähnchen

Luchs
- Kojote
- Uhu
- Habicht
- Bussard

Abb. 1: Die wichtigsten Arten und Aspekte der drei tropfischen Ebenen des borealen Waldes, die im Rahmen des Küns-Project untersucht werden.

Zwei Arten von Experimenten erlauben die verschiedenen tropfischen Ebenen (= Stufen der Nahrungskette) und deren Vernetzung (s. Abb. 1) zu analysieren:

- **Künstliche Eingriffe**: Durch experimentelles Verändern einzelner Komponen-ente des Ökosystems und durch das nachfolgende Beobachten der Reaktion der beteiligten Arten darauf kann auf die Bedeutung der veränder-ten Größe geschlossen werden. Beispielsweise wird auf gewissen Probe- flächen die Vegetation gedüngt, auf anderen die Hasen gefüttert, die Raubtiere oder die Hasen ausgeschlossen (Tab. 1).

- **Natürliche Beobachtung**: Allein die wechselnde Dichte der Schneehuh- hasen bietet ideale Bedingungen, um die Abhängigkeiten und Anpassun-gen der betroffenen Arten an einzelne Komponenten des Systems zu un- tersuchen. Die Hasen nehmen einen zentralen Platz im borealen Ökosy-stem ein. Einerseits sind sie die wichtigsten Pflanzenfresser, die die Vege-tation nachhaltig beeinträchtigen können, andererseits sind sie selber die Hauptnahrung vieler Fleischfresser, allen voran des Luchses.
Tab. 7 Experimental Beeinflussung des Zykls im borealen Wald im Rahmen des Kuane-Projekts (nach Krebs et al. 1992). Angegeben sind die Anzahl Prüfflächen. Da gestörte Flächen und die Reihenfur- nungsausgleiche sind je 1 km², die beiden Hasentiere je 4 ha und das übrigen Flächen je 600 m² pro Fläche.

<table>
<thead>
<tr>
<th>Zusätzliche Nahrung</th>
<th>Kehe</th>
<th>Kaninchenfluter</th>
<th>Dünge³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predatoren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>normal</td>
<td>2-4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ausgeschlacht</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hasen²</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

¹ Die Gelege (Grasgelege und Eichelnest) sind für die Hasen durchschnittlich 7 NPK-Dünger (5-10-5)/ha.

Der Luchs - Opfer oder Nutzniesser?

Luchsuntersuchungen im Yukon

Grundsätzlich akzeptierten wir das oben beschriebene Szenarium von der Abhängigkeit des Luchses vom Schneeschuhhasen als Hauptnahrung und begründeten unsere eigenen Hypothesen und Voraussagen darauf. Dennoch machten wir sowohl im Kluane- als auch im Snauf-Projekt Beobachtungen, die nicht recht ins Bild der 'Opter-These' passen wollten:

- Obwohl die Luchsdichte (erhoben durch Spurzähllungen) parallel zur Hasendichte anstieg, veränderten sich die Wohnungebiete der radialetemetrisch überwachten Luchse weiter während des Anstiegs noch nach dem Zusammenbruch der Hasenpopulation.

- Mit dem Einsetzen des Hasenrückgangs räumten - eher schneller als erwartet - die Fortpflanzung der Luchse ab. Erstaunlicherweise hatten aber selbst Weibchen, die sich nicht fortgepflanzt hatten, aussehendlich hohe Fettreserven, der Grund für die fehlende Fortpflanzung konnte also nicht in der schlechten körperlichen Verfassung liegen.
Der Kanadalucho ist keine "normale" Katze

Aufgrund dieser Beobachtungen kamen wir zum Schluss, dass die residenten Luchse, die wir beobachtet hatten, eine klügere Strategie verfolgten als die Abwanderung in ein unbekanntes Gebiet, um dann in der Fremde zu sterben. Wir vermuteten, dass sie versuchten, in ihren angestammten, auf geeignete Wohngebiete ausgerichteten Wohngebieten auszuharren und auf bessere Zeiten zu warten. Bereits Brand et al. (1976) hatten beobachtet, dass die Größe der Luchs-Wohngebiete nicht mit der Hasendichte korreliert war und, dass die obernichtliche Territorialität der residenten Luchse nicht eine Begrenzung des Luchsbestandes bewirkte. Wenn wir diese scheinbar widersprüchlichen Beobachtungen erklären wollen, müssen wir zunächst zwei Fragen beantworten:

- Was ist ein "normaler" Luchs?
- Was ist für ein Rautier das Besondere an einem zyklischen Nahrungsangebot?

1. Der Kanadalucho zeichnet sich aus durch enorme Schwankungen seiner Populationsparameter, je nach Hoch und Tief des Zyklus (Tab. 2): Fortpflanzung, Dichte und Überlebensrate erreichen bei maximaler Hasendichte Werte, die von keiner anderen Katzenart bekannt sind. Die Populationsdichte zum Beispiel kann bei einem Hoch bis zu 40 Luchsen pro 100 km² betragen. Bei einem Tief liegt sie zwischen 1 und 3 Luchsen pro 100 km². Im Süden des Verbreitungsgebietes, also in den Rocky Mountains der USA, wo der Zyklus nicht wirkt, liegt die Dichte bei etwa 2,5 Luchsen pro 100 km². Der nächste Verwandte des Kanadaluches, der Eurasische Luchs, erreicht bei uns Dichten von 1 bis 2 Individuen pro 100 km². Ähnlich sieht ein Vergleich mit anderen Parametern und anderen Katzenarten aus: Der Kanadalucho zeigt Werte, die für Katzen "normal" sind, nicht während des Hochs, sondern während des Tiefs des Zyklus.

<table>
<thead>
<tr>
<th>Populationsparameter</th>
<th>Nord</th>
<th>Süd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hoch</td>
<td>tief</td>
</tr>
<tr>
<td>Reproduktion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Weibchen mit PN Adulten</td>
<td>73 - 88%</td>
<td>11 - 33%</td>
</tr>
<tr>
<td>Jähränge</td>
<td>67 - 77</td>
<td>0 - 10</td>
</tr>
<tr>
<td>Anzahl PN bei Adulten</td>
<td>4.6 - 4.8</td>
<td>1.4 - 3.4</td>
</tr>
<tr>
<td>Jähringlein</td>
<td>3.5 - 3.9</td>
<td>0 - 0.2</td>
</tr>
<tr>
<td>Altersstruktur</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| % Adulte | 15 - 30 | 61 - 99 | 82%
| Jähringe | 40 - 62 | 1 - 17 | 11%
| % Junges | 31 - 40 | 0 - 3 | 7%
| Durchschnittsalter (Jahre) | 1.6 | 3.6 | 4.5 |
| **Dichte** (1000 km²) | 10 - 40 | 1 - 3.1 | 2.4 - 2.6 |
| **Jugendsterblichkeit** | 17 - 34% | hoch | 88% |

Wir gehen davon aus, dass der Kanadaluchs vor noch nicht sehr langer Zeit ein ganz gewöhnlicher Luchs mit geringer Fortpflanzungsleistung und geringer, aber stabiler Dichte war. Während der letzten Eiszeit, die im Norden vor knapp 12'000 Jahren zu Ende ging, erstreckte sich quer durch den Nordamerikanischen Kontinent ein riesiger Eisschild. Der Norden Kanadas sowie Alaska waren von den südlichen Gebieten abgeschnitten; wegen des gesunkenen Meeresspiegels existierte aber eine Landverbindung zu Sibirien. Damals wanderten Luchse von Asien her nach Nordamerika ein. Die Vorfahren sowohl des Kanadaluchses (Lynx canadensis) wie auch unseres Eurasischen Luchses (Lynx...
Die Strategie des Luchses im Verlauf des Zyklus

Bei unserem Erklärungsversuch gehen wir davon aus, dass ein gutes Territorium eine wichtige Voraussetzung zum Überleben ist, und dass ein Kern von residenten Luchsen während des gesamten Zyklus eine stabile Raumsstruktur aufrechterhalten versucht, die nicht auf das Hoch, sondern auf das Tief des Zyklus ausgerichtet ist. Der riesige Anteil an Jungtieren ist dann eine unmittelbare Folge günstiger Nahrungsbedingungen, die der Aufschwung der Hasenpopulation bietet. So gesehen wäre der Kanadaleuchs nicht ein Opter des Zyklus, sondern ein Nutzfresser, der in wenigen Jahrtausenden eine bemerkenswerte Anpassung an diese ausserordentliche Situation erreicht hat.

Synthese

Zum Schluss unserer Ausführungen über den 10-Jahres-Zyklus im borealen Wald Nordamerikas wollen wir versuchen, aufgrund des heutigen Wissens das Zusammenwirken der verschiedenen abiotischen (= leblosen) und ökologischen Faktoren zu erklären. Der Sonnenfleckerzyklus beeinflusst das Klima auf der
Erde. Dieser Einfluss ist nicht sehr stark, aber er genügt, um im kargen Ökosystem der borealen Wälder klimatische Variablen wie Niederschläge oder Temperatur, die das Wachstum der Vegetation begünstigen, rhythmisch schwanken zu lassen. Eine gute Klimaphase ist die Voraussetzung dafür, dass sich die von den Hasen geschädigte Vegetation erholen kann. Erst wenn sich die Pflanzen, die den Hasen als Winternahrung dienen, wieder von der Übernutzung erholt haben, beginnt auch die Hasenpopulation zu wachsen. Mit einer Verzögerung von ein bis zwei Jahren reagieren auch die Raubtiere mit zunehmenden Populationen auf das Ansteigen der Hasenbestände. Die Hasen haben aber eine viel größere Fortpflanzungsleistung als die Raubtiere, weshalb die Hasenpopulation schneller wächst als die ihrer Feinde. Während die Kraut- und Grasvegetation im Sommerhalbjahr den Hasen noch eine grosse Fortpflanzung erlaubt, wird die Winternahrung jedoch knapp. Die Hasen schädigen nachhaltig die Sträucher und Bäume, die im Winter ihre Lebensgrundlage bilden (Abb. 6).

Abb. 7: Die wichtigste Winternahrung der Schneeschuhhasen ist die Gefleckte Brokatrinde (Betula pubescens). Als Zweige, die sich im Winter über den Schnee befanden, wurden abgefrisst. Die Sträucher haben daher alle die gleiche Höhe.

Hinweise auf weiterführende Literatur

SEATON E.T. (1972): The Arctic prairie... London.

Copyright Dezember 1993 by Infodienst Wildbiologie & Ökologie

Impressum: Infodienst Wildbiologie & Ökologie, Strickholstr. 39, CH - 8057 Zürich, Tel. 01 362 78 88 Redaktion und Gestaltung: Barbara Falk, Strickholstr. 39, 8057 Zürich, Tel. 01 362 78 88 Fax 01 362 71 17 Abonnements-Administration: C. Ganz, Tel. 01 267 52 81 Jahresabonnement: Str. 39 - Ausland: Str. 45-
Erscheint: vor dem 1. Januar Druck: Studentendruckerei Uni Zürich, Winterthurerstr. 190, CH - 8057 Zürich