Efficacy of Oral Vaccination in the Final Stage of Fox Rabies Elimination in Switzerland

P. BUSSON1, U. BREITENMOSER2, E. PETERHANS1 and R. ZANONI3,4

1Institute of Cell Biology, Swiss Federal Institute of Technology, Zürich, Switzerland; 2Institute of Veterinary Virology, University of Bern, Bern, Switzerland; 3Corresponding author: Tel.: +41 31 312 378; fax: +41 31 312 534; E-mail: reto.zanoni@ov.unibe.ch

Received for publication August 12, 2004

Summary

Subsequent to rabies vaccination campaigns, two well-established methods for the determination of vaccinated foxes—the detection of tetracycline (TC) in bones and the detection of virus neutralizing antibodies (VNA) in thoracic fluids—were used and compared. Special emphasis was given to the effect of a new method of bait distribution at the den, which is primarily targeted at young foxes. The overall proportion of vaccinated animals estimated by TC was 60% as compared to 50% by VNA. In young foxes overall, significantly lower proportions of vaccinated animals (58% by TC and 40% by VNA) than in adult foxes (73 and 59%) were estimated with both methods. Low proportions of vaccinated young animals were found after spring (39 and 18%), but also after autumn vaccination (56 and 35%). In contrast, after den vaccination the level of vaccination of young foxes reached that of adult foxes. The theoretical implication of the successful elimination of fox rabies in Switzerland in spite of a relatively low overall proportion of VNA-positive animals is discussed.

Introduction

Rabies is a fatal zoonosis of mammals caused by a rhodovirus, which is present in more parts of the world. The European fox rabies epizootic of the past century, which originated in eastern Europe, reached Switzerland in 1967 and subsequently spread to the majority of the Swiss territory. The maximum number of rabies cases per year was recorded in 1978 with 1738 rabies cases, of which 72.7% were foxes as reservoir species and vector of the epizootic (Zanoni et al., 2000).

For the sake of public and veterinary health, the first field trial worldwide to eliminate fox rabies by oral vaccination was carried out in October 1978 in the Rhône valley in Switzerland (Steck et al., 1978). After the success of the trial, oral vaccination was gradually extended to the entire territory afflicted by the epizootic. Oral vaccination of foxes was carried out by manual distribution of vaccine-loaded baits (12-25 baits/km²) in endemic zones of fox rabies in spring and autumn (Kappeler and Wandeler, 2000).

After a steady decrease of rabies cases until 1990 (25 cases), a resurgence of the epizootic was observed in 1991 in the remaining endemic areas in north-western Switzerland. A combination of rabies cases was observed during the following years, which was attributed to both a significant growth of the fox population and subsequent changes in the population dynamics. Young foxes had become an increasing risk group for the persistence of rabies not observed before (Breitenmoser et al., 1995; Kappeler and Breitenmoser, 1995). Tocope with this new situation, an additional oral vaccination campaign at the den in early summer was introduced in 1995, consisting of the distribution of six to 10 baits per active fox den (Breitenmoser et al., 2000).

Since early 1997, no more indigenous cases of rabies have been observed in Switzerland.

To allow rapid estimation of the efficacy of oral vaccination in the vulpine population, tetracycline (TC) is added to the bait matrix as a marker which will be incorporated in the bones of bait-consuming animals. However, the presence of TC, which is well separated from the liquid vaccine, is not a direct measure of immunization. Therefore, we also determined antirabies antibodies and compared estimates for vaccination coverage by the two methods for the final stage of rabies elimination in Switzerland and analysed the effect of the den vaccination on the young fox population.

Material and Methods

Sampling of foxes

A total of 975 foxes, 845 from the vaccination zones in north-western and north-eastern Switzerland (Müller et al., 2000) and 130 foxes as a control sample from outside the vaccination area, sent to the Swiss Rabies Centre by hunters and game wardens for rabies diagnosis during the 1995/1996 vaccination period (19 June 1995 to 31 December 1996) were used for these analyses.

Age determination

Differentiation between the two age categories, young (<1 year) and adult foxes (≥1 year), was carried out by visual inspection of incisural wear and confirmed by radiography of a lower canine (Kappeler, 1991). The median birth date of the foxes was arbitrarily fixed on 1 March (Wandeler et al., 1974).

Grouping of foxes and oral vaccination schemes

To compare the effects of the different vaccination schemes ('classical' with spring and autumn campaigns or 'split' with spring, den and autumn campaigns) on young foxes, composed with adult animals, we distinguished four groups (Fig. 1): (i) Young foxes after the spring vaccination campaign carried out from early March to late April (SPR in Fig. 1) until the

U. S. Copyright Clearance Center Code Statement: 0931-179X/2004/$11.00/00 www.blackwell-synergy.com
Fig. 1: Grouping of doses in different zonal-seasonal vaccination groups. [NPR]: spring vaccination; AUY: autumn vaccination; DEN: den vaccination (in rabbits for this group of the adult frogs, ADU), because they are poxvirus-free in two different vaccination zones, with and without den vaccination; (SPR), young frogs after the spring vaccination campaign until the following vaccination campaign; (AUT), young frogs after the autumn campaign in the classical scheme (DEN); young frogs after the den vaccination campaign in the den vaccination scheme (ADU); adult frogs sampled from both areas (with and without den vaccination) throughout the year forming the control group.

Following vaccination campaign (either the autumn campaign in the classical scheme, or the den campaign in the den vaccination scheme, respectively); (ii) young frogs after the autumn campaign carried out from early September to late October in the classical scheme (AUT) in Fig. 1; (iii) young frogs after the den vaccination campaign carried out from mid-May to late June in the den vaccination scheme (DEN) in Fig. 1; and (iv) all adult frogs sampled from both areas throughout the year were pooled into a single group (ADU in Fig. 1). All these animals had experienced two to several vaccination campaigns before.

Tetracycline detection
TC was revealed in 100-150 μm thin sections of femur by UV transmission light microscopy (Leitz, Wetzlar, Germany) as described (Curti, 1981). Positive samples showed a fluorescent yellow to yellow-green colouration in at least one osteocyte or in the basallamel cell of the endostome or peristome.

Preparation of samples for serology
The two types of samples taken for serology from fox catchers were the blood coagulate from the heart and thoracic fluid, if any. They were both treated with 50% ammonium sulphate final saturation for protein precipitation. After measurement of the protein concentration with Coomassie Plus Protein Assay Reagent (Pierce, Rockford, IL, USA), samples were calibrated to contain 10 mg protein/tl, corresponding to an approximate dilution of 1:5 compared with serum. This step was important for the reduction of cell culture toxicity of the samples.

To determine the quality of the samples from fox catchers, blood was drawn from 18 foxes by intraosseous puncture directly after death. These foxes were then rounded for post and the positive samples were taken for direct comparison.

To detect transferrable transfer of maternal antibodies, unadsorbed/exudates derived from foetal inner organ posts were sampled in some instances. To confirm the lactogenic transfer of antibodies antibodies and TC to fox pupples, milk was sampled from several vixens. TC analysis by CHARM Test II (Helixtic, 1990) was carried out in the Research Unit MII, Swiss Federal Dairy Research Station, Leimbach, Switzerland. For serology, milk samples were treated by 50% ammonium sulphate final saturation for protein precipitation.

REFTIT for the detection of rabies VNA
A microtiter adaptation of rapid fluorescent focus inhibition test (REFTIT) in 96-well microtitre tissue culture trays was performed essentially as described (Smith et al., 1973). Zalán et al., 1979. The samples were serially diluted from 1:5 to 1:825 in BRK-21 cell culture medium. As control standard, a pool of human sera calibrated with the second international standard preparation for rabies immunoglobulins (Lying, 1994) was used. A dose of 102 fluorescent focus forming units (FFU)/ml of SADbatten (Street et al., Watts-Horton, Steck et al., 1978) virus suspension was added to each sample or control dilution. After an incubation of 90 min at 37°C – 5% CO2, 0.2 ml of each dilution was then added to each of two wells of a microtitre tissue culture tray. Finally, 0.2 ml of a BRK-21 cell suspension containing 105 cells/ml was added to each well. The cells were then incubated at 37°C – 5% CO2 for 25 h, washed and fixed after rabies virus inactivation by exposure to UV light. The presence of rabies virus was revealed using a goat anti-rabies/ FITC conjugate (Swiss Raies Centre). Ten microscopical fields per each well were read and fields containing at least one fluorescent cell were counted using a UV light microscope. The virus neutralizing antibody (VNA) titres were calculated according to Spearman-Karber (Spearman, 1908; Karber, 1931) by extrapolating the titre of the sample reducing the number of fluorescent microscopical fields to 50% and international units (IU) were determined via standard control (1.1 IU/ml). Only tests with a titre of the control standard between 1.20 and 1.10 for 1 IU, a viral titre between 3000 and 30 000 FFU/ml and a cell control without fluorescent cells with a confinement of >90% were accepted for evaluation.

Statistical evaluation
For comparison of proportions of vaccinated animals, chi- squared statistics were applied (Fleiss, 1981). P-values <0.05 were considered to be significant.

Results
Overall findings of TC and VNA detection
Three of 130 foxes from non-vaccination zones (2.3%) were positive for TC but negative for VNA. The distance of their origin to the closest vaccination zone was 17 km in two cases and 42 km in the third. The last oral vaccinations in these areas had been carried out more than 10 years ago. Eleven of the foxes from non-vaccination zones (8.4%) were positive for VNA but negative for TC. The average distance of their origin to the nearest vaccination zone was 5 km (0.3-13.5 km).

From a total of 845 foxes (422 young and 423 adult) from the vaccination zone during the sampling period 1990/1996, 66% were positive for TC, whereas only 50% had detectable
VNA. A 36% of the TC-positive foaxes were negative for VNA whereas 23% of the TC-negative foaxes were positive for VNA (Table 1).

The differences found between the DEN and the ADU group were not significant.

Discussion
A high discordance of 32% was found between the two tests used for the estimation of the proportion of vaccinated animals in favour of TC detection. Relatively high proportions of foaxes were either positive for TC only (36% of TC-positive animals) or for VNA only (23% of TC-negative animals). Overall, the proportion of vaccinated animals estimated by TC was significantly higher, with an average of 23% (relative proportion), than estimated by VNA. Comparable discordances were also observed and discussed by Kappeler (1991) and Vaillante et al. (1993). As TC and vaccine are separated physically in the bait, it seems obvious that the two markers (TC and VNA) are not strictly associated. Therefore, a possible explanation for the positive TC results in the absence of detectable VNA is the ingestion of the baits matrix without rupture of the vaccine container. Indeed, people out on a walk regularly reported the observation of intact vaccine containers in the field. Furthermore, also the relatively fast inactivation of the live modified live rabies virus vaccine (Stueck et al., 1982; Aubert et al., 2002) in the field may contribute to the discordance between TC and VNA. Other sources of TC (e.g. bovine pleurosis) cannot be excluded, but seem to be less

Table 1. Detection of tetracycline and virus neutralizing antibodies in foaxes

<table>
<thead>
<tr>
<th></th>
<th>VNA pos</th>
<th>VNA neg</th>
<th>TC pos</th>
<th>TC neg</th>
<th>TC pos</th>
<th>TC neg</th>
<th>TC pos</th>
<th>TC neg</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRR</td>
<td>19 (30)</td>
<td>7 (12)</td>
<td>12 (60)</td>
<td>30 (61)</td>
<td>2 (7)</td>
<td>26 (93)</td>
<td>9 (18)</td>
<td>7 (14)</td>
<td>24 (40)</td>
</tr>
<tr>
<td>AUT</td>
<td>98 (56)</td>
<td>51 (32)</td>
<td>47 (48)</td>
<td>77 (44)</td>
<td>11 (14)</td>
<td>66 (86)</td>
<td>62 (75)</td>
<td>51 (29)</td>
<td>12 (16)</td>
</tr>
<tr>
<td>DEN</td>
<td>277 (64)</td>
<td>186 (41)</td>
<td>41 (12)</td>
<td>71 (36)</td>
<td>14 (30)</td>
<td>57 (80)</td>
<td>100 (59)</td>
<td>86 (45)</td>
<td>14 (17)</td>
</tr>
<tr>
<td>TOT</td>
<td>244 (58)</td>
<td>144 (39)</td>
<td>100 (41)</td>
<td>178 (42)</td>
<td>27 (71)</td>
<td>151 (58)</td>
<td>171 (40)</td>
<td>184 (54)</td>
<td>20 (71)</td>
</tr>
<tr>
<td>ADU</td>
<td>316 (75)</td>
<td>232 (47)</td>
<td>104 (33)</td>
<td>107 (25)</td>
<td>39 (98)</td>
<td>66 (94)</td>
<td>231 (59)</td>
<td>221 (30)</td>
<td>39 (99)</td>
</tr>
<tr>
<td>Total</td>
<td>560 (60)</td>
<td>356 (64)</td>
<td>204 (38)</td>
<td>283 (38)</td>
<td>66 (32)</td>
<td>210 (77)</td>
<td>422 (50)</td>
<td>356 (42)</td>
<td>66 (60)</td>
</tr>
</tbody>
</table>

SPR, AUT, DEN and ADU as in Fig. 1. TC detection of tetracycline in boaxes; VNA, detection of virus neutralizing antibodies.

The proportions (percentages) of VNA-positivc and -negative foaxes (in italics) are relative to the corresponding TC results.

The proportions (percentages) of TC-positivc and -negative foaxes (normal text) are relative to the total of all foaxes of the corresponding group.
important in view of the small percentage of false-positive results found in non-vaccinated areas.

As an alternative explanation for this discordance, both technical (distribution of the serum neutralization test used) and biological inefficiency of the exclusively serological detection of immune mice must be considered. Protection in absence of VNA has been shown by several authors (Beuselinx et al., 1987; Sumner et al., 1991; Tuulo et al., 1991; Herzog et al., 1991; Xiang et al., 1995). This possibility is interesting in view of the results for rabbits, rats and control in fox populations (MacDonald and Veigl, 1986; Murray and Seward, 1992; Smith, 1993; Thuille et al., 1999; Smith and Chesebarn, 2002), according to which it seems unlikely to eliminate rabies in a high density population with a proportion of only 50% of immune animals. Therefore, the proportion of protected animals estimated by TC (64%) seems to be more realistic, although still at the lower bound for efficient control and the success of the campaigns observed in reality (Breitenmoser et al., 2000; Zanzoniac et al., 2003). Possibly, also, this value is an underestimation of the proportion of vaccinated animals, when the proportion of animals, which were positive by VNA only (5% overall) is taken into consideration. Detection of VNA in absence of TC could either be explained by non-specific reactivity in the serum neutralization assay or by loss of the TC marker in the bose. The former seems rather unlikely in view of the starting dilution used corresponding to an approximate dilution of 1:25 of sera, whereas the loss of TC-marked lanidus due to turnover of bone tissue, which is more pronounced in juvenile than in adult animals, seems plausible (Wosleider, 1994). In young foxes, also passive transfer of maternal antibodies could account for this finding. We have shown that the proportion of vaccinated foxes is higher in adult than in young animals (100% by either TC or VNA detection). This is consistent with the kinetics observed after repeated access to oral vaccination (Magson et al., 1987). The lowest proportion of vaccinated animals was found in fox cubs after spring vaccination. Still, in view of their reduced chance to consume baits during this vaccination period (Magson et al., 1999; Brackertz et al., 2000), Robertson et al. (2000), the proportion of both TC- and VNA-positive animals seems high (53% for TC and 18% for VNA). In a limited number of samples we have shown that antibodies can either be transferred transplacentally or by lactation from mother to cub (Xiang and Erdl, 1992; Blasco et al., 2001; Miller et al., 2001), although this transmission was not confirmed in another study (Vos et al., 2003). Furthermore, also TC was detected in the milk of voles. Therefore, it seems plausible that to some extent both TC and VNA could have been acquired passively by this age category. The limited half-life time of passive antibodies (Miller et al., 2002; Hotzmeier et al., 2003) combined with the fact that TC is a non-quantitative assay makes it difficult to determine the significant difference between the proportion of TC- and VNA-positive animals, respectively, found in this group (53%, respectively). Alternatively, also the interference of maternal antibodies with active vaccination of fox cubs could attribute for this result (Vos et al., 1999; Vos et al., 2001). Consequently, the autumn oral vaccination campaign might be considered to be the first effective vaccination of young foxes resulting in a proportion of vaccinated animals, which was not significantly higher than that after spring vaccination (corrected for multiple comparisons, not shown). As the autumn vaccination campaign takes place only after the dispersal of young foxes from their natal haunts in spring has started, an early and effective vaccination of young foxes could be crucial to control rabies in a high population density situation. This underlines the potential importance of supplementary measures aiming at young foxes, such as den vaccination, additional or delayed conventional oral vaccination campaigns (Furrer et al., 2001; Appel et al., 1995; Voss et al., 1997, 1998, Magson et al., 1999; Selbstor and Müller, 1999; Breyere et al., 2004; but see also von Voss et al., 1996) and the control of den vaccination (although not intrusive), is an important complement to classical oral vaccination campaigns, allowing to bring the critical age segment of young foxes to a level of protection comparable with that of adult foxes before dispersal starts in late summer.

Acknowledgements

This work was supported by the Swiss Federal Veterinary Office (grant No. 012.96.2). The technical support of D. Brigger is gratefully appreciated. We thank Prof. Dr. M. Schiltz (Research Unit Milk, Swiss Federal Dairy Research Station, Iselfeld, Switzerland) for performing the CHARM Test II. We also thank anonymous reviewers for their helpful comments, which have led to many improvements in the manuscript.

References

P. Brömer et al.

Hort, M., M. Laflaug, J. A. Montano-Hytos, C. Fritzt, D. Scott-

Kraemer, G., 1931: Beitrag zur kollektiven Behandlung pharmako-

Kappeler, T. A., M. and U. Bremermann, 1995: Projekt Jungschi-

Kappeler, A., 1991: Die orale Immunisierung von Fächern gegen

Desoye, J., 1994: Calibration of a replacement preparation for the

Masson, E., M. A. A. Brebes, J. Bariat, and P. Vuillermel, 1996:

Miller, U., A. Kappeler, R. G. Zinziri, and U. Bremermann, 2000:

Roberson, C. P. J., F. P. Baker, and S. Harris, 2000: Ranging be-

Sétho, T., and T. Müller, 1999: An evaluation of the efficiency of

Spurny, C., 1908: The method of “right or wrong cases” (constant

Tollis, M., B. Dietzschold, C. B. Volla, and H. Kopprowks, 1991: Immunisation of monkeys with rabies recombinant (RNP)

