fragments of Inland Atlantic Forest, now isolated by human-dominated landscapes. Multi-locus microsatellite analyses indicate detectable genetic differentiation among fragments, suggesting a strong effect of recent genetic drift as a likely explanation. In the second topic, we will describe a hybridization process identified between two wild felids where their geographic ranges meet, which we have characterized from genetic (multiple markers), ecological (diet, habitat association) and morphological standpoints. We address the history of this phenomenon, and relate it to another hybrid zone involving *L. tigrinus* and *L. colocolo.*

eduardo.eizirik@pucrs.br

Reintroduction of Lynx in Switzerland – A Molecular Evaluation 30 Years after Translocation

Christine Breitenmoser-Würsten¹* & Gabriela Obexer-Ruff²

¹KORA, Muri, Switzerland
²Institute of Genetics, University of Berne, Switzerland

Lynx went extinct in most of Central and Western Europe at the end of the 19th century. In the 1970s, re-introduction programs started in the Alps and in adjacent mountain ranges of Switzerland, Slovenia, Italy, Austria and France. For all projects, the founder individuals came from the same source population, the Carpathian Mountains of Slovakia. Some of the animals released were closely related (siblings, parent-offspring). Because of the clandestine manner of some of the releases in Switzerland, the whole re-introduction remained obscure, but all together, there were not more than 14-16 animals released in the Swiss Alps and 8-10 in the Jura Mts, respectively. The two populations in Switzerland are still relatively small and isolated. They consist today of not more than 40 - 60 reproducing individuals. From this situation, the following questions arise: Do the re-introduced populations have nowadays a reduced genetic variability compared to the Slovakian source population and other autochthonous populations in Europe due to the bottleneck created by the reintroduction? Do the two geographically separated populations of Switzerland differ genetically today? To address these questions, genetic analyses were performed using microsatellites. Currently, preliminary results based on 22 microsatellites and 530 samples from 13 populations are available.

ch.breitenmoser@kora.ch

Geographic Variation in Jungle Cat (*Felis chaus*) Body Size: Is Competition Responsible?

Shomita Mukherjee¹* & Colin Groves²

¹National Centre for Biological Sciences, Bangalore, India
²School of Archaeology and Anthropology, Australian National University, Canberra, Australia

There is a striking difference in body size of jungle cats (*Felis chaus*) in the west and the east of their distribution with Israeli cats being 43% heavier than Indian cats. We tested the hypothesis that increasing competition from other small felids towards the east is responsible for the difference in body size. We measured jungle cat skulls for eight cranial and dental variables and related these to independent variables such as species richness (local and regional), latitude, longitude, temperature and precipitation. Data from a narrow band between latitudes 24.0º N and 33.9º N where Bergmann’s rule was largely not observed showed that the western population (< 50.0º E longitude) of jungle cats is larger than the eastern (> 60.0º E longitude) population with